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The experimental realization of Fermi-Hubbard tweezer arrays opens a new stage for engineering fermionic
matter, where programmable lattice geometries and Hubbard model parameters are combined with single-site
imaging. In order to use these versatile experimental Fermi-Hubbard models as quantum simulators, it is crucial
to know the Hubbard parameters describing them. Here we develop methods to calculate the Hubbard model
parameters of arbitrary two-dimensional lattice geometries: The tunneling t , on-site potential V , and interaction
U for multiple bands and for both fermions and bosons. We show several examples. One notable finding is that a
finite array of equally strong and separated individual tweezer potentials actually sums to give a nonperiodic
total potential and thus spatially nonuniform Hubbard parameters. We demonstrate procedures to find trap
configurations that equalize these parameters. More generally, these procedures solve the inverse problem of
calculating Hubbard parameters: Given desired Hubbard parameters, find trap configurations to realize them.
These methods will be critical tools for using tunnel-coupled tweezer arrays.
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I. INTRODUCTION

The Fermi-Hubbard model has been widely studied over
a half century as it captures a key feature of strongly corre-
lated matter, the competition between kinetic and interaction
energy in a lattice, which is relevant to almost all quantum
materials. Although it is the simplest model for studying
interacting fermions on a lattice, it displays rich physics,
such as a metal-insulator crossover, antiferromagnetic order,
strange metallicity, and potential d-wave superconductivity
[1–6]. Due to its richness, the Fermi-Hubbard model is of
fundamental interest and is studied in numerous quantum
simulation platforms.

Ultracold atoms in optical lattices have been paradigmatic
quantum simulators of Hubbard models. Numerous long-
studied Fermi-Hubbard phenomena have been observed and
explored using optical lattice experiments [7–11]. Recently,
quantum gas microscopes capable of resolving single lattice
sites have further extended the capability of quantum control
and quantum simulation [12–14].

Nevertheless, optical lattice Hubbard models have impor-
tant limitations, most apparently that they are restricted to
periodic potentials since they are formed by interfering lasers.
Additionally, optical lattice experiments have yet to reach
temperatures deep into the regime characteristic of antiferro-
magnetism or potential superconducting order [15,16].

Recently, atoms in tunnel-coupled optical tweezer arrays
have provided a platform for simulating Hubbard models
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with programmable one-dimensional (1D) [17–22] and two-
dimensional (2D) [23] geometries and dramatically new
capabilities for reaching lower temperatures and entropies. In
particular, using near-unit filling and postselection techniques
to prepare low-entropy initial states for adiabatic preparation
may allow experiments to access previously inaccessible low-
temperature phases [21,23].

However, to utilize tunnel-coupled tweezers as quantum
simulators, one needs to know the programed Hubbard model
parameters: On-site potentials, tunneling rates, and interac-
tions. Theory is necessary, as measuring or calibrating all of
these parameters experimentally is challenging—cross effects
between traps make independently measuring parameters
difficult.

Although, in principle, these parameters can be determined
from the single-particle eigenstates, the calculations are sig-
nificantly more complicated than for optical lattices. In both
cases, one first determines the single-particle eigenstates and
then uses these to calculate localized Wannier functions from
which Hubbard parameters are obtained. For tweezers, how-
ever, there are obstacles in both steps. This has restricted
calculations to simple analytic treatments [24]; although use-
ful, this gives only rough order-of-magnitude estimates, and it
also misses qualitative features, such as the correct scaling of
the tunneling with respect to trap depth.

The first obstacle is the challenge of finding the eigen-
states. Tweezer arrays are nonseparable, in contrast to many
optical lattices, which reduce to one-dimensional problems.
Additionally, tweezers have no spatial periodicity, increasing
the size of systems that must be considered. Despite these
challenges, discrete-variable-representation (DVR) methods
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[25–30] that were first applied to two tunnel-coupled tweez-
ers in Ref. [31] are able to efficiently find the eigenstates.
DVR methods combine the exponential convergence of spec-
tral methods with the sparsity of real-space finite-difference
methods.

The second obstacle is that determining appropriately lo-
calized Wannier functions is more involved than for lattices,
even after the single-particle eigenbasis is found. For optical
lattices, the Wannier functions are simply Fourier transforms
of the eigenstates because of the periodicity of the lattice.
While, for only two identical tweezers, one can determine the
Wannier functions from reflection symmetry [31], for general
tweezer arrays finding the unitary basis transform that gives
localized Wannier functions is more involved.

In this paper, we develop a method to compute the Hubbard
parameters for tunnel-coupled tweezer arrays given the trap
parameters. We illustrate this method on several 1D and 2D
geometries and for multiband models. The method works by
combining the DVR method for single-particle eigenstates
with Riemannian manifold optimization techniques to com-
pute maximally localized Wannier functions that have been
developed in condensed-matter and quantum chemistry [32].
In the context of ultracold matter, similar methods were used
to construct Wannier functions for 1D double-well and 2D
honeycomb lattices [33,34], but for these periodic lattices
Bloch eigenstates can be obtained by diagonalizing a single
unit cell, so DVR techniques are less necessary, and Wannier
functions are translations of each other. Research on non-
periodic quasicrystalline optical lattices exists as well [35].
However, this work does not apply the more efficient DVR
method, and the way it constructs Wannier functions may lose
the maximal locality. Other research, in which an efficient and
precise method of tuning tight-binding parameters in 1D opti-
cal lattices was developed, encounters difficulties in obtaining
the Hubbard interaction parameter and faces challenges when
attempting to apply to higher dimensions [36].

One important finding of our example calculations is that
even when tweezers are nominally uniform—the Gaussian
beams have equal spacings, waists, and strengths—the re-
sulting Hubbard parameters vary spatially because the total
trapping potential differs site to site due to the finite size of the
array. This presents an obstacle to simulating translationally
invariant many-body systems, which have uniform Hubbard
parameters. We therefore propose and demonstrate techniques
to equalize the Hubbard parameters.

This paper is organized as follows. Section II presents the
method and demonstrates Hubbard parameter calculations in
optical tweezer arrays. We then describe our methods and
propose two experimental protocols to increase control of
Hubbard parameters in Sec. III and demonstrate these suffice
to achieve spatially uniform Hubbard parameters. Section IV
gives the conclusions.

II. HUBBARD PARAMETER CALCULATIONS

This section shows the methods and results of our Hubbard
parameter calculations. Section II A presents the theoretical
description of tunnel-coupled tweezer arrays and outlines our
approach to calculating Hubbard parameters. Section II B de-
scribes the DVR method to obtain single-particle eigenstates.

(a)

(b) (c)

(d)

FIG. 1. Hubbard model realized in an optical tweezer array.
(a) Tweezers are brought together in an array, with tunable trap
depths V0,i, spacings ai j , and waists wi, where indices index tweez-
ers. Throughout, we treat the waists wi as fixed unless otherwise
noted since they are not tunable in current experiments [21,23].
Only in Sec. III D do we present a speculative proposal for trap
engineering, in which we allow the waists to be tunable. (b) Under
suitable conditions, the array is described by a low-energy effective
Hubbard model with tunnelings ti j and interactions Ui. (c) Due to
cross talk, setting distances between traps and trap depths equal gives
potentials, interactions, and tunneling rates that are inhomogeneous:
The existence of the right trap changes the energy barrier between
the left and center traps, for example. (d) Two methods to equalize
Hubbard parameters are to adjust trap waists (in addition to locations
and depths), as shown in (a), and to add “ghost traps” as in (d).

Section II C describes how to construct the maximally local-
ized Wannier functions (MLWFs) from which the Hubbard
parameters are calculated. Section II D then calculates and
discusses the Hubbard parameters in various 1D and 2D lattice
geometries. This exhibits the power of the tweezer platform
and the efficiency and flexibility of our algorithm.

A. Tweezer arrays and outline for obtaining
Hubbard parameters

The optical tweezer array is made of tightly focused Gaus-
sian lasers, each of which induces an attractive potential
[Fig. 1(a)],

Vtrap(r) = −V0

1 + z2

z2
R

exp

⎡
⎣ ∑

ξ=x,y

−2ξ 2(
1 + z2

z2
R,ξ

)
w2

ξ

⎤
⎦, (1)
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where r = (x, y, z) is the Cartesian coordinate vector, ξ goes
over only x and y transversal coordinates, V0 is the trap
depth, and wx (wy) and zR,x (zR,y) are the trap waist and
Rayleigh range in the x (y) direction. zR is the “effective”
Rayleigh range, defined by 1

z2
R

= 1
2 ( 1

z2
R,x

+ 1
z2

R,y
). The trapping

laser beams’ locations and depths are programmable via de-
flections from a driven acousto-optic modulator (AOM) or
potentially phase masking by a spatial-light modulator (SLM).

Bringing traps close enough together results in coherent
tunnel coupling and in the right regime (described in what
follows) gives a system described by a Fermi-Hubbard model
[Fig. 1(b)]. The continuum Hamiltonian of atoms in the
tweezer array is

H = H0 + Hint

=
∫

dd r ψ†(r)

[
− h̄2

2m
∇2 + Vtotal(r)

]
ψ (r)

+ 1

2

∫
dd rdd r′ ψ†(r)ψ†(r′)Vint (r − r′)ψ (r′)ψ (r), (2)

with total trapping potential

Vtotal(r) =
∑

i

Vtrap,i(r − Ri ), (3)

where Ri are the beam centers, h̄ is the reduced Planck’s
constant, m is the atom mass, ψ (r) [ψ†(r)] is the annihilation
(creation) operator, and Vint (r − r′) is the interaction, which in
atomic systems, where the typical particle separation is large
compared to the interaction range, is

Vint (r − r′) = 4π h̄2as

m
δ(r − r′), (4)

where as is the s-wave scattering length. In principle, this
interaction needs to be regularized, but for what we will
do this unregularized form suffices since we will only use
matrix elements in a finite basis of analytic functions. Longer-
range interactions, like those that occur in ultracold molecules
[37–39] and Rydberg-dressed atoms [40–42], can be incorpo-
rated into our theory straightforwardly.

Under suitable conditions, the continuum Hamiltonian,
Eq. (2), is equivalent to a Hubbard Hamiltonian. Specifically,
when the interaction strength and temperature are weak com-
pared to energy gaps to excited states out of the manifold
that we will keep to describe the Hubbard limit (analogous
to “band gaps” in infinite periodic systems) and the number
of particles is sufficiently low that single-particle states above
this gap are not occupied, we can project Eq. (2) to the states
necessary for an accurate description of the physics, which is
often only a few bands or even a single band. Then Eq. (2) is

HFH = −
∑

μ

∑
i j

ti jμa†
iμa jμ +

∑
μ

∑
i

Viμniμ

+
∑
μνδσ

∑
i jkl

Ui jkl;μνδσ a†
iμa†

jνakδalσ , (5)

where μ, ν, δ, and σ index the “bands”; i, j, k, and l index
lattice sites; aiμ (a†

iμ) is the operator that annihilates (creates)
an atom on an orbital Wiμ(r), which is related to the field

= | ⟩

Fourier

eigenstates 

unitary 

(a)

(b)

FIG. 2. Maximally localized Wannier functions. (a) In a typical
optical lattice the Wannier functions are Fourier transforms of the
Bloch wave functions of the bands of interest (usually lowest en-
ergy), while (b) in tweezer arrays, the Wannier functions are unitary
transforms D of the relevant single-particle eigenstates (usually low-
est energy), where D is chosen to produce the maximally localized set
of Wannier functions, as measured by the cost function (12). Max-
imal localization ensures that the tunneling and interactions in the
effective Hubbard model resulting from this basis can be truncated
to short distances.

operators via the transformation

ψ (r) =
∑

iμ

Wiμ(r)aiμ; (6)

and the Hubbard parameters are given by

ti jμ = −
∫

dd rW ∗
iμ(r)

[
− h̄2

2m
∇2 + Vtotal(r)

]
Wjμ(r), (7)

Viμ =
∫

dd rW ∗
iμ(r)

[
− h̄2

2m
∇2 + Vtotal(r)

]
Wiμ(r), (8)

Ui jkl;μνδσ = 4π h̄2as

m

∫
dd rW ∗

iμ(r)W ∗
jν (r)Wkδ (r)Wlσ (r). (9)

In general, the set of orbitals {Wiμ(r)} can be an arbitrary
single-particle basis spanning the truncated space. However,
it is useful to choose Wiμ(r) to be as localized as possible
(by some measure introduced later), referred to as maximally
localized Wannier functions, in which case ti jμ and Ui jkl;μνδσ

can be truncated by discarding matrix elements between sites
far enough apart in real space. In sufficiently deep lattices,
it is an excellent approximation to truncate ti jμ to nearest
neighbors and Ui jkl;μνδσ to on-site interactions, in which case
we will denote it Ui;μνδσ . We will often suppress the spatial
indices if the parameters are uniform and suppress the band
index in the single-band case.

In infinite periodic lattices, the MLWFs are simply Fourier
transforms of the single-particle eigenstates (Bloch wave
functions), as shown in Fig. 2(a). The situation for optical
tweezer arrays is more complicated, and more general uni-
tary transformations from the single-particle eigenstates are
required, as illustrated in Fig. 2(b)].
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Our method, detailed in the next two sections, is therefore
to (1) solve for the single-particle eigenstates, (2) find the
MLWFs by finding the unitary transforms that give MLWFs in
the eigenstate basis truncated to the desired low-energy bands,
and (3) compute the Hubbard parameters with Eqs. (7), (8),
and (9).

B. Discrete-variable representations

We employ the DVR method, following Ref. [31], to cal-
culate the single-particle eigenstates with the lowest energies.
The DVR method solves the Schrödinger equation in a ba-
sis of position basis states at grid points rn (inside some
spatial region) projected onto a low-momentum subspace. It
maintains the exponential convergence of spectral methods
and sparsity of methods that use finite-difference derivatives
on real-space finite grids. All matrix elements are simple to
obtain analytically. The sparse Hamiltonian can be diagonal-
ized by the Lanczos algorithm to obtain the lowest-energy
eigenstates. Besides the benefits above, symmetries, such as
spatial reflection and rotation, can be easily incorporated into
the choice of DVR basis to reduce the size of the matrix. The
DVR method was shown to be an effective method for treating
atoms in optical tweezers [23,31].

We choose the DVR basis in a box on a Cartesian grid
of points. The method has two convergence parameters (for
each Cartesian direction) associated with the basis choice:
The size of the box and the grid spacing. We use a DVR
grid-point spacing (0.15, 0.15, 0.36)wx and set the distance
from the outermost trap centers to the system boundaries to
L0 = (3, 3, 7.2)wx . An assessment of the convergence is given
in Appendix A. We find that the Hubbard parameters pre-
sented in this paper are likely converged to a relative accuracy
of 10−8 or better.

In our calculations, we make use of spatial-reflection sym-
metries in the x, y, and z directions. The lattice is on the
z = 0 plane, so it is z reflection symmetric, and the coordinate
origin is set such that the lattices presented in this paper have
x- and y-direction reflection symmetries. Unless otherwise
mentioned, we calculate the z-reflection-even sector only to
find the lowest-energy states. For 1D lattices, the lattices sites
are on the y = z = 0 line, so we further only consider the y-
and z-reflection-even sectors.

C. Maximally localized Wannier functions

Given the eigenstates of the DVR calculation obtained
using the methods in the last section, we now describe how
to obtain the MLWF, essentially following the techniques in
Ref. [32]. We truncate the eigenstates to those in the “bands”
of interest. For a single-band model, it suffices to truncate
to a number of eigenstates equal to the number of traps. In
the present paper, we truncate by keeping the lowest-energy
states, but other truncation schemes could be used.

In this truncated eigenbasis {|φa〉}μ chosen for the μth
band, we seek a new maximally localized basis,

|Wiμ〉 =
∑
a∈Aμ

D(μ)
ia |φa〉 , (10)

where i indexes sites, D(μ)
ia is a unitary matrix within the μth

band, and Aμ is the low-energy subset of the eigenbasis picked
to form the μth band. D(μ)

ia is chosen to minimize the sum of
spatial spreads of the Wannier functions,

	μ =
∑

i

⎡
⎣〈Wiμ| r2 |Wiμ〉 −

∑
ξ

〈Wiμ| rξ |Wiμ〉2

⎤
⎦, (11)

where rξ = x, y, z. Other similar cost functions can be used,
as described in Ref. [32], but all should give equivalent results
when the Hubbard-regime approximations described above
are valid. For numerical purposes, it is convenient to work
with an equivalent form obtained by subtracting the unitarily
invariant part

∑
ξ tri[Pμrξ (1 − Pμ)rξ ], where the trace tri is

over all Wiμ for the given μ and Pμ = ∑
i |Wiμ〉 〈Wiμ| is the

projector onto the μth band,

	̃μ =
∑
i �= j

∑
ξ

| 〈Wiμ| rξ |Wjμ〉 |2

= tri[X
′2 + Y ′2 + Z ′2], (12)

where pure off-diagonal matrices X ′, Y ′, and Z ′ are defined
as, for example, X ′

ii = 0 and X ′
i �= j = 〈Wiμ| x |Wjμ〉. It is worth

noting that the cost function is always non-negative, and zero
value is taken if all the matrices X ′, Y ′, and Z ′ are diagonalized
simultaneously. For one dimension, since only X ′ is nonzero,
we make use of this fact and perform eigendecomposition
to derive D(μ)

ia for better performance. In higher dimensions,
these matrices do not, in general, commute in the DVR basis
since it is an incomplete basis, and therefore, numerical min-
imization is needed. But as shown in Appendix B, it can be
proven that 	̃μ does not depend on the phase of the matrix
elements of D(μ)

ia , so the latter can be reduced to an orthogonal
matrix. The minimization over orthogonal D(μ)

ia for each μ

can be done by established Riemannian manifold optimization
algorithms, implemented by the PYMANOPT package [43].

After constructing the MLWF by obtaining D(μ)
ia for every

band, we can now directly calculate Hubbard parameters t and
V from (7) and (8). These equations give

Viμ =
∑

a

εa

∣∣D(μ)
ia

∣∣2
, (13)

ti jμ = −
∑

a

εa
(
D(μ)

ia

)∗
D(μ)

ja i �= j, (14)

and

Ui;μνδσ = 4π h̄2as

m

∑
abcd

(
D(μ)

ia D(ν)
ib

)∗
D(δ)

ic D(σ )
id

×
∫

dd r φ∗
a (r)φ∗

b (r)φc(r)φd (r), (15)

where εa is the energy of the single-particle eigenstate |φa〉
and the integral is done numerically.

Since
∑

iμ Viμ is irrelevant in a particle-number-conserving
system, in practice we shift Viμ to the average value over all
Vi1 in the lowest μ = 1 band.
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D. Results

This section presents the results of calculating Hubbard
parameters in various 1D and 2D lattices. For concreteness,
the trap parameters are those from recent experiments with
6Li atoms [21,23], but all of our methods are general. For
rectangular lattices, the lattice constant is set to ax = 1550 nm
along the x direction and ay = 1600 nm in the y direction
[44]. For triangular-type lattices, e.g., kagome and honeycomb
with defects, we use a = 1550 nm for all neighbor bonds.
We use a λ = 780 nm laser wavelength and use an isotropic
trap waist w = wx = wy = 1000 nm to generate circular traps
with depth V0 = h × 52.26 kHz (h is Planck’s constant). This
results in an isotropic Rayleigh range in the z direction of
zR = πw2

λ
= 4028 nm. The s-wave scattering length is as =

93.66 nm. These are the parameters used in our calculations
throughout the paper unless mentioned otherwise.

Figure 3 shows the Hubbard parameters calculated for five
example geometries in the single-band limit. Figures 3(a) and
3(b) show chains and rectangular lattices, small versions of
geometries routinely realized in optical lattices. Figures 3(c)
and 3(d) show geometries that are more challenging, but
possible, to realize in an optical lattice: A 2 × 2 Lieb lattice
[45] and a kagome lattice [46,47]. Finally, Fig. 3(e) shows
a geometry that is straightforward to create in tweezers that
would be extraordinarily difficult or impossible to realize in
an optical lattice, a honeycomb lattice with a Stone-Wales
defect [48]. For all the calculations the manifold optimizations
[and matrix diagonalization for Fig. 3(a)] converge to machine
precision for the resulting MLWFs. These calculations all run
in no more than around 1 min on a laptop. The majority of the
time is spent on diagonalizing the DVR matrices.

In addition to demonstrating the efficacy of the DVR +
MLWF method described in Secs. II A–II C, these results al-
low us to assess the accuracy of range truncating the tunneling
and interactions in Eq. (5). Figure 3(a) shows that the tunnel-
ing amplitudes decay rapidly with increasing distance for the
1D chain. The same is true for Ui jkl , where we find the on-site
Ui are two orders of magnitude larger than any U involving
two or more sites. These justify the effective Hubbard model
description.

Higher bands can be included in the Hubbard models
if desired, and the methods employed here work without
modification. Figure 4 illustrates this for two-band Hubbard
parameters for a 3 × 3 rectangular lattice consisting of two
lowest-energy bands: The first is spanned by MLWFs that
are approximately single-trap ground states, and the second is
spanned by the first excited state, which is odd under z reflec-
tions. Given the reflection symmetries of two bands, the only
nonzero interband Uμνδσ are Uμννμ and Uμμνν with μ �= ν, and
they are equal because all MLWFs are real. This result shows
the power of the DVR + MLWF calculation method. Access
to higher bands could pave the way to simulating multiorbital
models, an important aspect of real materials.

An interesting feature revealed by Fig. 3 is that Hubbard
parameters vary spatially over the tweezer arrays, despite
these tweezers’ equal spacing and depth, due to the cross talk
illustrated in Fig. 1(c). This shows the need to adjust trap
parameters to achieve uniform t , U , and V , a task we take
up in Sec. III. We note, however, that the nonuniformity is

largely concentrated near the edge of the system, as shown in
Figs. 3(a) and 3(b), inspiring one of our protocols to equalize
Hubbard parameters discussed in detail in Sec. III.

III. EQUALIZING HUBBARD PARAMETERS

For quantum simulations, often, we are interested in
translation-invariant models, but Sec. II showed that equally
spaced and equal-depth traps do not lead to spatially uniform
Hubbard parameters. This is natural because optical tweezer
arrays, in contrast to optical lattices, lack translation invari-
ance. The cross talk between traps breaks the trap uniformity,
as shown in Fig. 1(c). This effect is particularly severe at
the boundaries. So whether and how trap parameters can
be chosen to equalize the Hubbard parameters are important
questions.

A. Method

One approach to equalizing the trap parameters is to intro-
duce a cost function measuring how unequal the parameters
are and to use optimization algorithms to minimize this over
the space of trap parameters: The trap center positions ri and
the individual trap depths V0i. We use the cost function

C = 1

t̃2

∑
q

1

Nq

∑
i

(qi − q̃)2, (16)

where q = tx, ty,V , and U labels the Hubbard parameters
being equalized, {q̃} are target values for the parameters (we
allow separate tunnelings tx and ty for anisotropic lattices), i
indexes sites for U and V and indexes bonds for tx and ty,
Nq labels the number of Hubbard parameters of kind q, and
t̃ is the smaller of t̃x and t̃y. This characterizes the parameter
fluctuations compared to the most sensitive energy scale in
the model. The optimization algorithms we use are the se-
quential least-squares programming (SLSQP) method in the
SCIPY package and principal axis (PRAXIS) method in the
NLOPT package in the PYTHON programming language. We
apply both methods and choose the better minimum.

This cost function depends on the target Hubbard parame-
ters {q̃}. One cannot simply choose these arbitrarily, as there
are constraints, for example, on how large parameters such
as the tunnelings can be. For example, for two traps, there
is a maximum “tunneling” when the two traps are focused at
the same location. In practice, in order to stay in the Hubbard
regime, the tunneling needs to be set much lower than this
maximum. Additionally, choosing target values for which a
known trap configuration gives Hubbard parameters reason-
ably close to the target values will make the optimization more
efficient, reducing the number of Hubbard parameter calcula-
tions required and reducing the chances of getting stuck in a
local, rather than global, minimum.

To obtain the target {q̃}, we have found the following pro-
cedure works well. We first calculate Hubbard parameters for
initial trap configurations in the geometry desired, and then
we choose the largest interaction in the lattice as our target
Ũ and the smallest tunneling in the x and y directions as our
target t̃x and t̃y. To achieve the desired U/ta values we can
scale the geometry. The target value for V is set to zero (recall
that as mentioned in Sec. II C, the zero of V is shifted in every
calculation to the average of the lowest band).
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(a)

(b)

(d) (e)

(c)

FIG. 3. Hubbard parameters calculated for (a) an eight-site chain, (b) a 5 × 5 rectangle, (c) 2 × 2 Lieb plaquettes, (d) a star of David
(kagome plaquette), and (e) a honeycomb lattice with a Stone-Wales defect. Each node of the graph shown is centered at the Wannier-function
peak position. Numbers offset from the nodes are on-site interactions U , those inside circles are on-site potentials V , and those on bonds are
tunnelings t , all in units of h × Hz. For each geometry, we shift the Vi so that their average is zero since only relative differences between Vi

have physical meaning. The transparency of bonds reflects the tunneling strength. Further-neighbor tunnelings are shown in (a) but omitted
elsewhere. Tweezer parameters are specified in the text.

In the following, we present the results of equalizing Hub-
bard parameters to uniform target values. We will present
results from three protocols: The first two use only capabilities
demonstrated in existing experiments (we adjust only the trap
positions ri and depths V0i), while the third also allows the
tweezer waists wi to be tuned, and we suggest a method to
accomplish this.

B. Equalization with previously demonstrated
tweezer techniques

We first try to equalize Hubbard parameters based on how
previous experiments [21,23] were performed: We adjust the
trap positions ri and depths V0i. The results are shown in
Fig. 5. In all the diagrams, especially Fig. 5(b), we can see
how equalizing Hubbard parameters requires distorting the
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(a) (b) (c)

FIG. 4. Two-band Hubbard parameters for (a) the first band, (b) interband interactions between the first band and the z excited band, and
(c) the z excited band. The z direction is out of the plane, and the z excited band is the lowest-energy excited band for the parameters considered,
as described in the text.

experimental trap parameters. In Fig. 5 (and following fig-
ures), the positions of the nodes are located at the peaks of
the Wannier functions; the transparency of nodes shows the
relative depths of trap V0i compared to the trap with maximum
depth.

From Fig. 5, we can see that although the total variation
of V over the lattice is suppressed to less than ∼h × 5 Hz, the
differences for interaction U and tunneling t are only mod-
estly improved compared to the uniform trap configurations,
such as results in Figs. 3 and 4. (The squared variation is
reduced by a few percent, while the maximum difference can
even increase slightly.) This is particularly severe if we think
of the most sensitive energy scale t̃ in the Hubbard model, as
the maximal fluctuation of U is as large as t̃ . The variation is
the most significant when comparing boundary and bulk sites.
And comparing various lattices, it is more severe in lattices
with more neighbors.

It is natural that not all parameters can be equalized since
the number of Hubbard parameters is larger than the number
of tunable trap parameters. For example, a large anisotropic
square lattice has roughly four Hubbard parameters per trap
(tx, ty, U , and V ) but only three parameters to tune per trap (x
and y locations and trap depth V0i). Trade-offs can be made in
the accuracies of tx,y, V , and U by reweighting the terms in the
cost function (16), but at best one can equalize two parameters
fairly accurately.

In order to fully equalize all the Hubbard parameters, more
degrees of freedom must be introduced. Here we present two

proposals to achieve that goal: the first uses extra “ghost traps”
on the edges and uses only tuning of trap parameters already
demonstrated in experiment (positions and depths), and the
second uses “trap-dependent waists.” The ghost-traps pro-
posal is the more feasible approach with current experimental
capabilities but still must be handled with care (keeping
ghost traps sufficiently distinct to avoid beating and requir-
ing slightly more laser power to generate ghost-trap layers).
The trap-dependent-waist proposal is more speculative and
has challenges in obtaining sufficient flexibility in tuning the
waists with AOMs or the stability of SLMs but, nevertheless,
conceivably could be developed into a useful tool.

C. Proposal 1 for improved equalization: Ghost sites

The first proposal to equalize Hubbard parameters is to
add ghost sites, as shown in Fig. 1(d). Inspired by the obser-
vation that the Hubbard parameter nonuniformity is mostly
near system edges, an experiment can simply be restricted to
measurements on sites away from the edges and can obtain
good uniformity. If, additionally, one optimizes for unifor-
mity only on sites not along the edge by including only
nonedge sites in the cost function, the parameters can be
made uniform (we obtain a 2 × 10−4 relative variation be-
tween parameters in the example, with error that is set by the
optimization algorithm tolerance, rather than a fundamental
limitation of the protocol). This is illustrated for the chain
and square lattices in Figs. 6(a) and 6(c). This protocol is

(a)

(b) (c)

FIG. 5. Hubbard parameters for trap parameters that give the closest-to-equalized Hubbard parameters [according to Eq. (16)] achievable
by varying trap position and depth for (a) an eight-site chain, (b) one Lieb plaquette, and (c) a 3 × 3 rectangular lattice. Number labels are as
in Fig. 3.
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(a)

(b) (c)

FIG. 6. Hubbard parameters equalized as in Fig. 5, augmented with “ghost sites” on the boundaries for (a) an eight-site chain, (b) one Lieb
plaquette, and (c) a 3 × 3 rectangular lattice. Number labels are as in Fig. 3.

suitable when one is studying lattices of simple patterns, such
as 1D chain or 2D square lattices. Then physical quantities
such as the particle number in the edge sites (ghost traps) are
not included in measurements of observables for the purposes
of quantum simulation. In this way, the edges can be seen
as a special boundary condition to the rest of the tweezer
array.

A slightly more difficult case in which to employ ghost
traps is a lattice such as the Lieb plaquette, as several bound-
aries occur not as the edges of a large array, but within each
unit cell. Another example is when one wants to study a
finite-size Hubbard system with sharp edges. In this case,
ghost traps can still be used, but one must ensure that particles
do not occupy the ghost traps. This can be done by ensuring
the on-site potential on the ghost traps is large enough to
prevent occupation, which is done by giving the equalization
algorithm a 5% × V0 ≈ h × 2500 Hz smaller initial value for
V0 on the center ghost trap, which is about one order of
magnitude larger than tunnelings. Figure 6(b) shows that this
approach again works well for the Lieb plaquette by applying
the special initial guess for the central ghost trap “inside” the
plaquette. This relative error is better than 2 × 10−4 and is
controlled by the optimization convergence criterion, with a
central ghost trap having Vi = h × 1400 Hz.

D. Proposal 2 for improved equalization:
Tunable tweezer trap waists

Adding ghost traps is effective but requires sacrificing
many traps (and associated laser power and imaging region)
to traps that are not being measured. Ghost traps are lattice
geometry specific, and they might not work well for irregular
lattice geometries, such as a lattice with a Stone-Wales defect,
as shown in Fig. 3(e). Additionally, although we do not ex-
plore it here, it would not provide any significant ability to

engineer higher bands’ Hubbard parameters. In this section,
we introduce a second method that offers more tuning param-
eters and does not require additional traps.

This second proposal is to adjust each tweezer trap waist
wi individually, as shown in Fig. 1(a), which increases the
number of trap parameters and gives a natural way to tune
Ui, Vi, and ti j more independently. Although site-dependent
waists have not been demonstrated in experiment, one idea to
change the width of each trap individually is to program it
using the same stroboscopic averaging that is used to create
the tweezers in the first place [23]. There may be limited
control of the exact shape created due to imaging resolution
and rate of strobing, but some control on trap width should be
possible.

The Hubbard parameters after optimizing using these ad-
ditional degrees of freedom are shown in Fig. 7. We vary only
waists wi,x in the x direction in the 1D chain in Fig. 7(a), while
for the more complicated 2D systems shown in Figs. 7(b) and
7(c), we allow for both x- and y-direction waists wi,x and wi,y

to vary.

IV. CONCLUSION

We have calculated the effective Hubbard model param-
eters for programmable fermionic optical tweezer arrays, a
novel platform for quantum simulations and computation. We
used a combination of a DVR method to obtain single-particle
eigenstates, truncating these to the target energy band, and
optimizing over the manifold of unitary transformations for
that energy subspace to obtain the MLWF. We found that
this method allowed us to efficiently calculate Hubbard pa-
rameters. We also presented results for several geometries:
finite 1D chains, 2D square lattices, Lieb lattices, and hexago-
nal lattices with Stone-Wales defects. Multiband calculations
were demonstrated for a two-band square lattice. We note
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(a)

(b) (c)

FIG. 7. Hubbard parameters equalized as in Fig. 5 and also allowing waists to vary: (a) an eight-site chain allowing the x-direction waist to
vary and (b) a Lieb plaquette and (c) a 3 × 3 rectangular lattice allowing trap waists to vary in the x and y directions. The shape of each node
shows the ratio between distorted trap waists in the x and y directions. Number labels are as in Fig. 3.

that the method is immediately applicable to other systems,
including bosonic atoms and long-range interacting systems,
such as lanthanide atoms [49–51], polar molecules [37,38,52–
54], and Rydberg-dressed atoms [40,41,55]. In addition, our
methods are equally effective for recently developed hybrid
lattice-tweezer architectures, such as optical lattices with
programmable site-block tweezer beams [56] and optical qua-
sicrystals realized by a set of incommensurate-wavelength
laser beams [35,57].

One feature revealed by our results is that even though
a tweezer geometry may be uniform (equal spacings and
depths for all traps), the resulting Hubbard parameters may
be nonuniform. This effect is most pronounced near the edges
of the trap arrays.

Since researchers often want to study spatially uniform
Hubbard models, we introduced and demonstrated protocols
to design trap-array parameters to achieve this. We expect
that optimization with an appropriately chosen cost function
should also allow us to determine trap parameters that lead to
desired nonuniform Hubbard models. The enhancement of the
programmability of tweezer arrays could further contribute
to the realization of the proposed fermionic gate design and
control [58,59].

Although published experiments with tunnel-coupled
tweezers [17,18,21,23] have worked with modest-sized sys-
tems having at most ∼50 traps, experiments with hundreds or
perhaps thousands of sites and atoms seem possible by extend-
ing current techniques. Experiments with tweezer arrays of
Rydberg atoms now routinely work with over 100 atoms. For
example, recent experiments have reached 225 sites to achieve
a perfect filling of one atom per trap [60] over 33% of the time
in a room-temperature apparatus. Cryogenic experiments can
offer even larger arrays [61]. And there are clear routes to
increasing this number. There are no fundamental obstacles
to applying the same techniques to tunnel-coupled tweezers.
Our code readily handles such cases, scaling well with the
number of traps Ntrap. The time and memory required for DVR
calculations scale no worse than N2

trap. The time and memory
costs to find the unitary basis transformation are negligible
and scale no worse than DVR. In practice, we are able to
calculate the Hubbard parameters of systems with 100 traps
in about an hour on a laptop.

Our source code is publicly available on GitHub [62].
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APPENDIX A: DVR CONVERGENCE

In the main text, we used the DVR grid-point spacing �x =
(0.15, 0.15, 0.36)wx and set the box size by setting the dis-
tance from the outermost trap centers to the system boundaries
to L0 = (3, 3, 7.2)wx . This was shown to be highly converged
for a single trap in Ref. [23]. We additionally checked the
convergence in an eight-site chain Hubbard parameter calcu-
lation by comparing values of t , U , and V among different
grid-point spacings �x and ranges L0. In addition, we also
checked the U numerical integration convergence by varying
the number of points in the integration grid. All of the above
results are summarized in Fig. 8, indicating good convergence
for the results presented in the main text. Based on these
results, we expect worst-case errors from all sources across
all results in the text to be 10−8 or smaller. In the remainder of
this Appendix, we will describe how the convergence of the
algorithm was assessed.
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(a) (b) (c)

FIG. 8. The maximal error of eight-site-chain Hubbard parameters vs DVR grid spacing �x = (1, 1, 2.4) × �x1, grid range L0 =
(1, 1, 2.4) × Lx , and numerical integration grid-point number Nint . The definition of each quantity is explained in Appendix A.

We characterize the error of a given Hubbard parameter by
extrapolating the convergence parameter (e.g., grid spacing
�x or spatial buffer size L0) to its fully converged value
(e.g., �x → 0 or L0 → ∞) and then calculating its maximum
relative error over the whole geometry εmax, defining the error
as the relative difference between the grid being assessed and
the extrapolated grid:

εmax = max
i

∣∣q(choice)
i − q∗

i

∣∣
|q∗

i |
. (A1)

Here qi can be any Hubbard parameter ti j , Vi, or Ui, and the
site (bond) index i is over the entire lattice. q(choice)

i means qi

is calculated for some convergence parameters, and q∗
i is the

qi extrapolated at the infinitely fine grid.
The extrapolation is performed by fitting the three most

accurate grid choices for the quantity qi using the exponential
function:

q(choice)
i (N ) = ae−bN + c, (A2)

where N is the grid fineness parameter. It can be N�x, NL, or
Nint, whose definitions are given below. The extrapolation is
performed to N → ∞, so that q∗

i = c for each fit.
Figure 8(a) shows the convergence with the DVR grid spac-

ing �x. We consider results for grid spacings �x = L0/N�x

with N�x = 12, 14, . . . , 28, and we fix L0 = (3, 3, 7.2)wx .
These spacings range from �x∗ = (0.107, 0.107, 0.0.257)wx

to (0.25, 0.25, 0.6)wx . The grid spacing we use in the main
text corresponds to N�x = 20. These results suggest the grid-
spacing convergence error is as small as 10−9 for calculations
in the main text.

Figure 8(b) shows the convergence with the total size
of the DVR box, measured by L0. We vary L0 over L0 =
(0.15, 0.15, 0.36)wx × NL, where NL = 12, 14, . . . , 28, and
we fix �x = (0.15, 0.15, 0.36)wx , with the best convergence
at L∗

0 = (4.2, 4.2, 10.08)wx . The box size we use in the main
text is NL = 20. These results show that the box-size conver-
gence error is on the order of 10−9. We see this error saturates
to the error from �x.

Finally, Fig. 8(c) shows the convergence of U with the
numerical integration grid density. We choose the numerical
integration region to extend to 1.2 times the DVR box and the
integration grid spacing to be set by the number of grid points
in each dimension Nint. In the main text, we use Niint = 257.
The results show that the numerical integration converges to
the order of machine precision.

For the higher-band case, we expect error convergence to
be similarly exponential, but with a slightly larger prefactor,
according to calculations in [31].

In summary, all of our Hubbard parameter systematic nu-
merical errors are under control to an error less than 10−8.
And our parameter choices are close to saturation.

APPENDIX B: PROOF OF ALL-REAL MLWF
TRANSFORMATION-MATRIX ENTRIES

In this Appendix, we prove that in our case, all entries
in the MLWF unitary transformation matrix D(μ)

ia can be
chosen to be real. This means it can be reduced to the spe-
cial orthogonal matrix. This stems from the fact that the
tweezer trapping continuum Hamiltonian is real. Without
loss of generality, we suppress the band index μ for the
derivation.

Our starting point is the cost function (12) to minimize in
the main text to find MLWFs:

	̃ =
∑

ξ

∑
i �= j

| 〈Wi| rξ |Wj〉 |2

=
∑

ξ

∑
i �= j

∣∣∣∣∣
∑

ab

(Dia)∗DjbRξ,ab

∣∣∣∣∣
2

, (B1)

where Rξ,ab ≡ 〈φa| rξ |φb〉 is shorthand for matrix elements of
position operators in the eigenbasis {|φa〉}.

Since the continuum Hamiltonian is real, it can be proven
that the eigenstates can all be real. Think of the complex
conjugate of the eigenequation of φa with eigenenergy εa:

H∗φ∗
a = ε∗

aφ∗
a → Hφ∗

a = εaφ
∗
a . (B2)

Because both H and εa are real, φ∗
a is the degenerate eigenstate

of the same eigenenergy. Proper linear combinations of φa and
φ∗

a lead to two real solutions. Therefore, we claim that Rξ,ab

matrices are Hermitian and real.
As mentioned in the main text, this function is non-

negative, and the zero value can be taken if Rξ = X,Y, Z
can be simultaneously diagonalized. In a 1D lattice, only
the Rξ = X matrix would be nonzero due to reflection
symmetry, and the minimum of 	̃ is found at the Dia

diagonalizing Xab. This Dia is orthogonal (has only real
entries) because eigenstates of the real Hermitian matrices
Rξ,ab can be chosen to be real, with the reason illustrated
above.
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For higher dimensions the Dia that minimize 	̃ are no
longer the eigensolutions of Xab, as the matrices Rξ are basis
dependent and in general don’t commute. The optimization
needs to be done numerically.

Nevertheless, the matrix Dia can be simplified to be real
entries by the following proof.

Since we cannot find a single real (orthogonal) matrix
to diagonalize three Rξ , we find three orthogonal matri-
ces Oξ to diagonalize the real Hermitian matrices Rξ,ab,
respectively:

Rξ,ab =
∑
mn

rξ,mδmnOξ
amOξ

bn, (B3)

where rξ,m is the mth eigenvalue of matrix Rξ .
Then we decompose the unitary matrix into two matrices

Dia = ∑
b Oξ

abZξ

bi, where we absorb all complex phases into
the ξ -dependent matrix Zξ . It is clear that Zξ is unitary as
well.

For each ξ we can expand the terms in cost function (B1)
and simplify the equation by substituting Oξ :

∑
i �= j

∣∣∣∣∣
∑

ab

(Dia)∗DjbRξ,ab

∣∣∣∣∣
2

=
∑
i �= j

∣∣∣∣∣
∑

ab

(Dia)∗Djb

∑
mn

rξ,mδmnOξ
amOξ

bn

∣∣∣∣∣
2

=
∑
i �= j

∣∣∣∣∣
∑

ab

(Dia)∗Djb

∑
m

rξ,mOξ
amOξ

bm

∣∣∣∣∣
2

=
∑
i �= j

∑
m

∣∣(Zξ
mi

)∗
Zξ

m jrξ,m

∣∣2
. (B4)

The above occurs because of the orthogonality of Oξ . We then
expand the complex modulus:

∑
i �= j

∑
m

∣∣(Zξ
mi

)∗
Zξ

m jrξ,m

∣∣2

=
∑
i �= j

∑
m

(
Zξ

mi

)∗
Zξ

m jrξ,m

∑
n

(
Zξ

n j

)∗
Zxinirξ,n

=
∑
mn

rξ,mrξ,n

∑
i �= j

(
Zξ

miZ
ξ
n j

)∗
Zξ

niZ
ξ
m j . (B5)

Now we focus on the only complex part:

∑
i �= j

(
Zξ

miZ
ξ
n j

)∗
Zξ

niZ
ξ
m j

=
⎛
⎝∑

i j

−
∑
i= j

⎞
⎠(

Zξ
miZ

ξ
n j

)∗
Zξ

niZ
ξ
m j

=
∑

i

(
Zξ

mi

)∗
Zξ

ni

∑
j

(
Zξ

n j

)∗
Zξ

m j −
∑

i

(
Zξ

miZ
ξ
ni

)∗
Zξ

miZ
ξ
ni

= δmn −
∑

i

∣∣Zξ
mi

∣∣2∣∣Zξ
ni

∣∣2
. (B6)

The last Kronecker delta is from the fact that Zξ is unitary, and
δ2

mn = δmn.
We can see that every factor in the expression of 	̃ is

independent of the phase of any unitary matrix entry Zξ
mi. So

it suffices to assume all entries of Dia are real.
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